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Reactive oxygen species play a crucial role in the prognosis and tumor
microenvironment (TME) of malignant tumors. An ROS-related signature was
constructed in gastric cancer (GC) samples from TCGA database. ROS-related
genes were obtained from the Molecular Signatures Database. Consensus
clustering was used to establish distinct ROS-related subtypes related
to different survival and immune cell infiltration patterns. Sequentially,
prognostic genes were identified in the ROS-related subtypes, which were
used to identify a stable ROS-related signature that predicted the prognosis
of GC. Correlation analysis revealed the significance of immune cell iniltration,
immunotherapy, and drug sensitivity in gastric cancers with different risks.
The putative molecular mechanisms of the different gastric cancer risks were
revealed by functional enrichment analysis. A robust nomogram was established
to predict the outcome of each gastric cancer. Finally, we verified the expression
of the genes involved in the model using RT-qPCR. In conclusion, the ROS-
related signature in this study is a novel and stable biomarker associated with
TME and immunotherapy responses.
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1 Introduction

Gastric cancer (GC) is associated with high morbidity and mortality rates (Smyth et al.,
2020). Surgical resection of advanced GC is the only truly effective treatment (Berretta et al.,
2016; van Boxel et al., 2019). However, GC patients have a higher rate of recurrence and
metastasis after surgery (Catalano et al., 2005). Therefore, investigating the mechanisms that
govern the occurrence and metastasis of gastric cancer, as well as identifying diagnostic
markers and therapeutic targets, has become a hotspot.

Reactive oxygen species (ROS) are defined as oxygen-containing reactive species,
such as superoxide anions (O2-) and hydroxyl radicals (OH-) (Collin, 2019). Normal
levels of ROS participate in multiple signal transduction pathways and control cell
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proliferation, differentiation, and growth (Mittler, 2017). It
appears that a redox imbalance in which ROS production
exceeds the cellular capacity to scavenge ROS leads to
oxidative stress (Pizzino et al., 2017). This phenomenon has
been implicated in the development of GC. In previous
studies, ROS have been found to influence GC progression
through autophagy (Liu J. Z. et al., 2020; Cao et al., 2020).
However, ROS-related genes have not yet been
comprehensively identified as playing a significant role in GC.

NOS3 (endothelial NOS, eNOS) is an enzyme belonging
to the family of nitric oxide synthases that mainly generates
nitric oxide (NO) (Tenopoulou and Doulias, 2020). NO is
involved in ROS-mediated malignancy and normal tissue damage
(Nissanka and Moraes, 2018). Previous research has shown that
NOS3 inhibits apoptosis and promotes tumor proliferation,
invasiveness, and immunosuppression (Sun et al., 2020).
Therefore, we proposed that the ROS-related genes can be used
to predict tumor survival and immunotherapy response.

In our study, based on a systematic investigation of the expression
level and clinical characteristics of ROS-related genes, we constructed a
prognostic model for these genes in GC patients. In addition, the
correlation between these genes and immune cell infiltration was also
demonstrated. The prognostic value of these genes can predict tumor
immune microenvironment in GC. Furthermore, clinical and
immunological characterization of ROS-related genes will be
beneficial for the optimization of immunotherapy in GC.

2 Methods and materials

2.1 Extraction and processing of gastric
cancer data

The whole steps performed in the analysis were displayed in the
Supplementary Figure S1 The transcription profile and clinical
characteristics of gastric cancer were extracted from The Cancer
Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/) and the
National Center for Biotechnology Information Gene Expression
Omnibus (GEO) databases (https://www.ncbi.nlm.nih.gov/geo/). The
GEO datasets that contain more than 200 human samples and have
complete expression data and clinical information were selected as
independent test cohorts. Finally, the GSE84433 as well as the
GSE84437 which is a SuperSeries that composed of
the GSE84426 and GSE84433 Subseries were chosen. The TCGA-
STAD project containing 375 tumor and 32 normal tissues,
GSE84437 containing 433 human samples, and
GSE84433 containing 357 human tissues were selected for further
analysis (Yoon et al., 2020). The transcription profile was converted
into fragments per kilobase million (FPKM), and the batch effect of the
data in GSE84437 was eliminated. The clinical information of TCGA
and GEO datasets were presented in Supplementary File S2. The
transcriptomic data of TCGA-STAD was downloaded using the
“TCGAbiolinks” R package. The expression difference between
tumor and normal tissues was identified using the “limma”
algorithm and presented with a heatmap and a volcano plot (Ritchie
et al., 2015). The log2 fold-change (log2FC) > 1 and false discovery rate
(FDR) < 0.05 were set as the cut-off to screen the differently expressed
genes (DEGs). ROS-related genes (Supplementary File S1)

were extracted from the Molecular Signatures Database (MSigDB)
database (http://www.gsea-msigdb.org/gsea/index.jsp).

2.2 Inner correlation between ROS-related
genes

A protein-protein interaction (PPI) network of ROS-
related genes was constructed using the STRING database (http://
string-db.org/), revealing their putative connections. Then, the
correlation between these genes and their mRNA expression was
further explored by R packages “igraph” and “reshape2 (Csardi and
Nepusz, 2006)”. Red lines show positive correlations, whereas blue
lines indicate negative correlations.

2.3 Identification and verification of ROS-
related clusters

First, the consensus clustering was conducted with the expression of
prognostic ROS-related genes from the “limma” as well as
“ConsensusClusterPlus” R packages (Wilkerson and Hayes, 2010;
Ritchie et al., 2015). Through consistent cluster analysis, we obtained
a cluster Max K value = 9 and cluster Num = 2. Then, K-M analysis of
ROS-related clusters was conducted using the “survival” and
“survminer” R packages (Rich et al., 2010). Additionally, a heatmap
was applied to show the relationship between clusters and age, sex,
tumor grade, clinical and T, N, and M stages, as well as the expression
profiles of these genes in different clusters, demonstrating the success of
this clustering. Sequentially, the immune cell infiltrations between
different clusters were evaluated utilizing the “MCPcounter” R
package, including B linage, CD8+ T cell, cytotoxic lymphocyte,
fibroblasts, T cell, NK cell, monocytic linage, myeloid dendritic cell,
and neutrophils (Becht et al., 2016).

2.4 Establishment of ROS-related signature

TTCGA-STAD was used as the training set. The GSE84437 and
GSE84433 were used as the validation sets. DEGs were identified in ROS-
related clusters. Then, least absolute shrinkage and selection operator
(LASSO)Cox regression was applied with theDEGs in the TCGA-STAD
project to obtain a ROS-related signature (Tibshirani, 1997). The risk
score was derived using the formula = ∑n

i�1Coef(i)*Expr(i).
Univariable Cox regression analyses of genes were conducted to assess
the prognostic value of each single gene, and themutation profiles of these
genes were presented using a waterfall plot. The “maftools” R package
was used to analyze and visualize the mutation including the missense
mutation, non-sense mutation, frame-shift mutation, and multi-hit
mutation. Patients were grouped into low- or high-risk subgroups
according to the median score of the entire GC. Scatter plots were
visualized to establish the correlation between survival status and risk
score. Principal component analysis (PCA) and t-distributed stochastic
neighbor embedding (t-SNE) analysis were applied to assess the capability
of the risk score to distinguish low- and high-risk patients (Ringnér, 2008;
Cieslak et al., 2020). The receiver operating characteristic (ROC) curves
were conducted to evaluate the predictive ability of the signature by
“SurvivalROC” R package (Mandrekar, 2010). K-M survival analyses
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were conducted between different risk GC groups to verify differences in
survival. Besides, three other signatures were used to conduct a
comparation analysis with the ROS-related signature, comparing the
C-index (Liu et al., 2022; Mak et al., 2022; Zhou et al., 2022).

2.5 Development and validation of a ROS-
related nomogram

Uni- and multivariable Cox regression analyses were
performed on TCGA-STAD and GSE84437 datasets to identify
independent prognostic factors. Sequentially, the relationship
between the risk score and clinical characteristics was
presented in the heatmap. Then we constructed a prognostic
nomogram using the “rms” R package (Iasonos et al., 2008).
Calibration plots were used to assess the discriminative power of
the nomogram (Van Calster et al., 2016). The accuracy of this
nomogram was verified using ROC and decision curves
(Mandrekar, 2010; Kerr et al., 2016).

2.6 Subgroup analyses and immune cell
infiltration pattern

The limma algorithm was used to reveal the distinct risk of GC in
different subgroups, including age, sex, tumor grade, clinical and T, N,
and M stages, as well as immune subtypes (Ritchie et al., 2015).
Moreover, Survival differences in the low- and high-risk subgroups
were established using the K-M analysis. The ImmuneScore,
StromalScore, and EstimateScore were assessed by “estimation of
stromal and immune cells in malignant tumor tissues using
expression data (ESTIMATE)” algorithm, as well as immune cell
infiltrations were evaluated using the “tumor immune estimation
resource (TIMER),” “cell-type identification by estimating relative
subsets of RNA transcripts (CIBERSORT),” “CIBERSORT-absolute
mode (ABS),” “QUANTISEQ,” “microenvironment cell populations-
counter (MCPCOUNTER),” “XCELL,” and “estimating the proportion
of immune and cancer cells (EPIC)” algorithms (Becht et al., 2016; Aran
et al., 2017; Li et al., 2017; Chen et al., 2018; Plattner et al., 2020). In
addition, single-sample gene set enrichment analysis (ssGSEA) and

FIGURE 1
ROS-related genes in GC. (A) A heatmap of differentially expressed ROS-related genes in GC. (B) A volcano plot of ROS-related genes in GC. (C) A
protein-protein interaction network. (D) A correlation network of ROS-related genes.
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immune function analyses have been conducted for different risk
patients (Zhu L. et al., 2021).

2.7 Prediction of immunotherapy response

The expression of immune-related genes was assessed using the
“limma” algorithm. The tumor mutation burden (TMB), microsatellite
instability (MSI), and tumor immune dysfunction and exclusion (TIDE)
scores were then calculated. TMB score was conducted by R package
“maftools” (Mayakonda et al., 2018), MSI score was obtained from
previous research (Bonneville et al., 2017), and TIDE score was
conducted by online database (http://tide.dfci.harvard.edu/). Finally,
the immunophenoscore (IPS) of the different risks was evaluated in

different subgroups. IPS refers to four main parts (effector cells,
immunosuppressive cells, MHC molecules, and immunomodulators)
determining the immunogenicity, and is calculated without bias using
machine learning methods. The IPS of STAD patients were downloaded
from The Cancer Immunome Atlas (TCIA) (https://tcia.at/home).

2.8 Correlation between ROS-related
signature and gene mutation and drug
sensitivity

To further explore the relevant factors of the ROS-related signature,
we established the risk score in distinct wild and mutated GC types,
including ARID1A, CSMD3, FAT4, FLG, LRP1B, MUC16, SYNE1,

FIGURE 2
Consensus clustering of ROS-related genes in GC. (A) Clustering heatmap for k = 2. (B) K-M curve of C1 and C2. (C) A heatmap for correlation of
clusters with clinical characteristics.
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TP53, and TTN. Afterward, the relationship between signature and 5-
fuorouracil, gemcitabine, cytarabine, dasatinib, etoposide, GSK690693,
masitinib, and tipifarnib were evaluated according to inhibitory
concentration (IC50) by the “pRRophetic” R package (Geeleher et al.,
2014) based on the Genomics of Drug Sensitivity in Cancer database
(GDSC, https://www.cancerrxgene.org/).

2.9 Functional enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses were performed to evaluate
the functions of DEGs in low- and high-risk GC (Kanehisa and Goto,
2000; The Gene Ontology Consortium, 2019). Gene set enrichment
analysis (GSEA) was applied between different risk groups. The
threshold of GSEA analysis was log2FC > 1 and p < 0.05, and the
top five enriched pathways were identified (Subramanian et al., 2005).
The “c2. cp.kegg.v7.4. symbols. gmt” file downloaded from the GSEA
database (https://www.gseamsigdb.org/gsea/index.jsp). Moreover, gene
set variation analysis (GSVA) was performed with reference to the
methods of previous research, and the enriched functions of different

risk groups were visualized using a heat map (Hänzelmann et al., 2013).
The enrichment analyses were performed by the “limma” and “GSVA”
R packages (Yu et al., 2012; Ritchie et al., 2015).

2.10 Cell culture

HGC-27 and GES-1 cells were obtained from the Cell Bank of
Shanghai Institute of Biochemistry and Cell Biology (Shanghai,
China). The cell lines were cultured in DMEM or RPMI-1640
supplemented with 10% fetal bovine serum (FBS), 100 μg/mL
streptomycin, and 100 U/mL penicillin (Gibco).

2.11 Clinical sample

All samples were obtained with the approval of the Ethics
Committee of Ningbo First Hospital. A total of 4 GC patients who
signed the informed consents were recruited from the Ningbo First
Hospital. The tumor samples and normal tissues were collected
from the surgical specimen of the patients.

FIGURE 3
Immune cell infiltrations of cluster 1 and 2.
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FIGURE 4
Development of a ROS-related signature in GC. (A) A univariable Cox regression analysis of genes constructing the signature. (B) A waterfall of
mutation profile of genes constructing the ROS-related signature. (C) LASSO regression of prognostic genes of cluster 1 and 2. (D) Cross-validation for
tuning parameter selection. (E) Risk score of GC in TCGA-STAD dataset. (F) Correlation of survival status with risk score in TCGA-STAD dataset. (G) Risk
score of GC in GSE84437 dataset. (H) Correlation of survival status in GSE84437 dataset.
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FIGURE 5
Verification of the stability of ROS-related signature. (A) PCA analysis of low- and high-risk GC for TCGA-STAD and GSE84437 datasets. (B) t-SNE
analysis for TCGA-STAD and GSE84437 datasets. (C) K-M curve for different risk GC in TCGA-STAD dataset. (D) K-M curve for patients in
GSE84437 dataset. (E) ROC analysis of the ROS-related signature across TCGA-STAD project. (F) ROC analysis of ROS-related signature across
GSE84437 dataset.
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FIGURE 6
Independently predictive ability of the signature. (A, B) Univariable and Multivariable analysis across TCGA dataset. (C) Univariable analysis across
GSE84437 dataset. (D) Multivariable analysis of the signature across GSE84437 dataset. (E) A heatmap for the correlation of the signature with clinical
characteristics.
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2.12 RT-qPCR

Total RNA was extracted using TRIzol reagent (Invitrogen) and
reverse-transcribed into cDNA templates. β-Actin was used as an
endogenous reference. The primer sequences used for amplification
are listed in Supplementary File S3.

2.13 Statistical analysis

All statistical analyses were performed using the R software
(version 4.1.3) (Supplementary File S4). Group comparisons
were performed using the Wilcoxon test or Student’s t-test.
Correlations between two continuous variables were assessed
using Spearman’s correlation analysis. The Kruskal-Wallis
test was used to compare the three groups. Adjusted p-value was
calculated using Benjamini-Hochberg FDR. Statistical significance
was set at p < 0.05.

3 Results

3.1 Expression and PPI network of ROS-
related gene

First, 87 ROS-related genes were obtained from the GSEA database.
Using the “limma” package, 31 differentially expressed ROS-related
genes were identified (Figures 1A, B). The PPI network was constructed
to identify ROS-related DEG interactions (Figure 1C). Meanwhile,
Figure 1D shows the correlation network of DEGs, in which
different colors indicate different correlation coefficients.

3.2 Identification of ROS-related molecular
subtypes

The effect of ROS-related genes on GC samples was assessed using
consensus clustering analysis. When k = 2, the cumulative distribution

FIGURE 7
Establishment of a nomogramwith ROS-related signature and clinical characteristics. (A) A nomogram contains ROS-related signature, age, gender,
tumor grade, clinical and T, N and M stage. (B) A calibration plot for assessing the predictive power of nomograms at 1-, 3-, and 5-year. (C) Univariable
analysis of the nomogram across TCGA dataset. (D) Multivariable analysis across TCGA dataset. (E) DCA analysis of the nomogram model.
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curve was most horizontal in the middle section and the heatmap of
clustering showed a clear edge. Therefore, GC samples in TCGA-STAD
were grouped into two clusters based on ROS gene expression
(Figure 2A). The overall survival (OS) rates of the C1 and
C2 clusters were significantly different, and the prognosis of the
C1 cluster was worse than that of the C2 cluster (Figure 2B).
Besides, the K-M survival curve of progression free survival (PFS)
also demonstrated the poorer outcome of C1 cluster (Supplementary
Figure S2). Figure 2C shows the gene expression profiles between the
C1 and C2 clusters. We also analyzed differences in immune cell
infiltration between the two clusters and found more immune cell
infiltration in the C1 cluster, including B lineage, CD8 T cells, cytotoxic
lymphocytes, T cells, NK cells, neutrophils, fibroblasts, monocytic
lineage, and myeloid dendritic cells, than in the C2 cluster (Figure 3).

3.3 Establishment and validation of the
signature

A 4-gene prognosis model including GPX3, DUSP1, NOS3, and
TCIRG1 was constructed using LASSO Cox regression (Figures 4A, B).

All of the signature genes were identified prognostic genes by univariable
Cox analysis, including GPX3, DUSP1, NOS3, and TCIRG1 (Figure 4C).
We also analyzed mutations in these genes in GC (Figure 4D). GC
patients were divided into high- and low-risk groups according to the
median risk score in the training cohort (Figures 4E, F) and test cohort
(Figures 4G, H). Patients in the high-risk group had a higher risk of death
and poorer prognosis than those in the low-risk group. As shown in
Figures 5A, B, PCA demonstrated clear distinctions between the two risk
groups.

Low-risk patients were linked to better prognoses based
on survival curves (Figure 5C) in the TCGA cohort. Similarly,
in the test cohort, patients with lower-risk scores showed better
survival (Figure 5D and Supplementary Figure S3). Additionally,
the area under the curve (AUC) value indicated that our model
had a good predictive power (Figures 5E, F). According to
Cox regression analyses, the risk score was regarded as an
independent prognostic factor for the training and testing
cohorts (Figures 6A–D). The landscape of the four signature
genes in the training group is shown in the heatmap
(Figure 6E). The comparation analysis indicated that the
stability of our signature is better than signatures of Mak

FIGURE 8
Risk score variation of different risk GC in different subgroups.
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et al., Zhou et al., and Liu et al. (C-index, 0.614 to 0.568, 0.597, and
0.607) (Supplementary Figure S4). To explore the genomic
alterations in low- and high-risk GC, gene mutation analysis
was conducted. Result showed that the TMB of low-risk GC is
significantly higher than high-risk GC. Besides, some vital cancer-
related genes such as TTN, TP53, MUC16, and ARID1A more
frequently mutated in low-risk GC (Supplementary Figure S5).

A nomogram was developed to predict survival rates in GC
(Figure 7A). The predicted results were in good agreement with the
actual results according to the calibration plots (Figure 7B).Moreover, the
nomogram was regarded as an independent prognostic factor (Figures
7C,D). The AUC of the nomogram was 0.747 (Figure 7E).

3.4 Correlation of prognostic model with
clinical features

Next, the correlation between the risk scores and clinical features
was studied. Different subgroups, including age, grade, T and TNM
stage, as well as immune subtype, had significantly distinct risk scores

(Figure 8). In addition, subgroup analysis showed differences in survival
between different risk groups in different GC subgroups, including
age >65 years, female, male, M0, age ≤65 years, Grade III, stage III-IV,
N1-3 and T3+4, further verifying the reliability of this model (Figure 9).

3.5 Correlation of the model with immune
activity

The immune microenvironment plays a critical role in
the development of GC. In our study, we found that patients in the
high-risk group had higher immune, stromal, and ESTIMATE scores
(Figure 10A). Next, the differences in immune cell infiltration between the
different risk groups were assessed (Figure 10B). Infiltration ofMonocytes,
Macrophages M2, Mast cells resting, naïve B cells, and eosinophils was
more abundant in the high-risk group, while infiltration of CD4 memory
activated T cells, resting NK cells resting and Macrophages M1 was more
abundant in the low-risk group (Figure 10C). In addition, APC
co-stimulation, CCR, and Type II IFN responses were usually more
significant in the high-risk group (Figure 10D).

FIGURE 9
Survival differences of GC in different subgroups.
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Immune checkpoint molecules are also involved in
the occurrence and development of GC. We found that
the expression of most checkpoint genes was higher in the
high-risk group (Figures 11A, B). TIDE, TMB, and MSI
were used to predict the response to tumor immunotherapy.
As shown in Figure 11C, the TIDE, exclusion, and dysfunction
scores were all higher in the high-risk group than in the low-
risk group. Moreover, the TMB and MSI scores were higher
in the low-risk group (Figures 11D, E). Furthermore, we found
that patients in the low-risk group responded better to
immunotherapy (Figure 11F).

3.6 Correlation of prognostic model with
genetic mutations and predict
chemotherapy drug sensitive

Gene mutations are crucial factors in tumor development. In
the current study, the correlation between prognostic models and
genetic mutations was analyzed. We found that the risk score was
lower in the mutation group than in the wild-type group
(Figure 12). Next, we predicted the chemoresponses of the
subgroups to common chemotherapeutics (Figure 13). The
results revealed that high-risk patients were more sensitive to

FIGURE 10
Immune cell infiltration pattern in different risk GC. (A) Tumor purity analysis. (B) Immune cell infiltration of different risk GC. (C) ssGSEA analysis. (D)
Immune function analysis of different risk GC.
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5-Fluorouracil, Gemcitabine, cytarabine, dasatinib,
etoposide, GSK690693, masitinib, and tipipifarnib, suggesting
that these patients could benefit from these chemotherapeutic
agents.

3.7 Functional enrichment analysis

To further explore the functional enrichment of the signature,
we performed an enrichment analysis of DEGs between the low- and

FIGURE 11
Capacity of immunotherapy response of the ROS-related signature. (A, B) Expression difference of immune checkpoint in different risk GC. (C) TIDE
score. (D) TMB score. (E) MSI of low- and high-risk GC. (F) IPS of low- and high-risk GC in different subgroups.
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high-risk groups. GO enrichment indicated that DEGs were
enriched in “muscle system process,” “collagen−containing
extracellular matrix,” and “extracellular matrix structural
constituent” (Figures 14A, C). KEGG enrichment analysis
showed significant enrichment of the “PI3K-AKT” and “cGMP-
PKG” signaling pathways (Figures 14B, D). Additionally, from the
heatmap of GSVA, significant difference of enriched functions
between different risk groups were presented (Figure 14E).

3.8 RT-qPCR in GC

As shown in Figure 15A, the expression of GPX3, DUSP1,
NOS3, and TCIRG1 was explored using the GEPIA2 site (http://
gepia2.cancer-pku.cn/#index). Low expression of GPX3 and
DUSP1 was observed in GC tissues as compared to that in
normal tissues, whereas NOS3 and TCIRG1 were highly
expressed in GC tissues. RT-qPCR was performed to verify
the expression levels of these genes. The results demonstrated
that NOS3 and TCIRG1 were highly expressed in tumor

cells and samples compared to normal cells and tissues, while
GPX3 and DUSP1 were expressed at low levels in tumor cells and
samples (Figures 15B, C).

4 Discussion

With advances in high-throughput sequencing technologies,
an increasing number of disease targets and prognostic biomarkers
have been identified. However, reactive oxygen species-related
prognostic biomarkers for GC remain limited. More and
more researches have shown that elevated ROS levels are
closely linked to the occurrence and development of cancer
(Wang et al., 2019). A prognostic model based on these genes
was constructed to elucidate the roles of ROS-related genes
in GC. Next, the correlation of the prognostic model with
immune-infiltrating cells was demonstrated. In addition, the
model showed excellent predictive performance for the
immune microenvironment of patients with GC. Furthermore,
the clinical and immunological characteristics of the constructed

FIGURE 12
Risk score difference of distinct gene mutation types.
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prognostic model for GC may help optimize tumor
immunotherapy.

ROS refers to a class of oxygen-containing compounds
converted from molecular oxygen, whose chemical
properties are more active than molecular oxygen (Wu and
Cederbaum, 2003). Living organisms have a complex
oxidative-antioxidant system (Birben et al., 2012). Under
normal circumstances, ROS maintained within a stable
range can play a positive role in anti-inflammatory and
antibacterial activities (Zhu et al., 2021). When this balance
fails to be maintained, ROS increase, promoting cell
transformation and lead to the occurrence of malignant
tumors (Kim et al., 2016). Studies have shown that ROS can
disrupt mitochondrial function and promote oxidative stress,
leading to gastric carcinogenesis (Lee and Yu, 2016).

Our 4-gene (GPX3, DUSP1, NOS3, TCIRG1) signature based on
ROS-related genes was used for GC. Previous studies have reported
that these genes play crucial roles in various cancers, including GC.
For example, GPX3 inhibits the growth and spread of GC by
regulating methylation and ROS (Xie et al., 2022). Cheng et al.
found that DUSP1 activates the MAPK pathway in GC, leading to
apatinib resistance (Teng et al., 2018). Moreover, Zhang et al.
revealed that the expression level of OS3 was increased and
significantly associated with poor patient prognosis in GC (Zou
et al., 2021). In this study, we found that high-risk patients had a
poorer prognosis.

ROS are not only associated with tumorigenesis and
development but also with immune checkpoint inhibitors. The
study has shown that ROS can induce the expression of PD-L1
by regulating JAK/STAT3 pathway (Liao et al., 2021). In our study,

FIGURE13
Drug sensitivity of diverse agent in different risk GC.
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we also found that different risk groups had different immune
checkpoint expression, and the survival time of patients with
high expression of TGFB1, TGFBR1, CD27, BTLA, CD40,

and IL-10 in the high-risk group was shorter than that in the
low-risk group. In addition, we found that the constructed
prognostic model could predict the response to immunotherapy,

FIGURE 14
Functional enrichment analysis. (A. C)GO analysis of DEGs between low- and high-risk GC. (B, D) KEGG analysis. (E)GSVA analysis of low- and high-
risk GC.
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with patients in the high-risk group having a poorer response to
immunotherapy.

The occurrence of tumors is an extremely complicated
biological process, and there are various non-tumor cells in its
microenvironment, such as cancer-associated fibroblasts
(CAF), tumor-associated macrophages (TAM), immune cells
and various lymphatic vessels, tissue fluid, and cytokines, which
can maintain tumor growth and increase tumor heterogeneity,
adaptability, and metastasis, eventually leading to the development
of malignant tumors (Chen et al., 2021; Laha et al., 2021;
Raskov et al., 2021; Zhou et al., 2021). Our study found a
higher degree of macrophage M2 infiltration in the high-risk
group, which may contribute to its poor prognosis.
M2 macrophages are involved in tumorigenesis, growth,
invasion, and metastasis, and often promote tumor cell growth,
angiogenesis, and migration (Zhao et al., 2020). Numerous
studies have shown that TAM present in tumor tissues
usually exhibit an M2-like phenotype, which is closely
associated with cancer treatment and prognosis (Liu et al.,
2020; Pan et al., 2020).

GO and KEGG analyses based on DEGs between different
risk groups were performed to further elucidate the underlying

mechanisms of ROS-related genes. GO analysis revealed that the
DEGs were enriched in “collagen−containing extracellular
matrix,” “muscle system process,” and “extracellular matrix
structural constituent.” KEGG showed significant enrichment
of “PI3K-AKT” and “cGMP-PKG” signaling pathway. The
PI3K-AKT signaling pathway is involved in the occurrence
and development of various cancers, and can promote the
proliferation and invasion of cancer cells, inhibit apoptosis,
and promote tumor angiogenesis, thereby leading to the
progression of malignant tumors (Alzahrani, 2019; Ediriweera
et al., 2019; Noorolyai et al., 2019).

In addition, we evaluated the effectiveness of some common
chemotherapeutic agents in different risk groups and found that
patients in the high-risk group were more sensitive to eight
chemotherapeutic agents (5-fluorouracil, gemcitabine, cytarabine,
dasatinib, etoposide, GSK690693, masitinib, and tipifarnib),
indicating that high-risk patients may benefit from these eight
chemotherapy drugs.

In general, we have provided the most comprehensive
elucidation of ROS-related genes in GC. We first constructed an
ROS-related prognostic model for GC, confirmed the relationship
between the model and immune checkpoint genes, as well as

FIGURE 15
Expression of GPX3, DUSP1, NOS3, and TCIRG1. (A) Expression of DUSP1, GPX3, NOS3, and TCIRG1 in GEPIA2 online set. (B) RT-qPCR detected the
expression of DUSP1, GPX3, NOS3, and TCIRG1 in gastric cancer cell and normal cell. (C) RT-qPCR detected the expression of DUSP1, GPX3, NOS3, and
TCIRG1 in gastric cancer samples and normal tissues.
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immune infiltration, and predicted the response of different risk
patients to immunotherapy and chemotherapy. It provides a
screening tool for the diagnosis and prognosis of gastric cancer,
and a new way to dissect the relationship between gastric cancer and
immunity. Our tool contained only four genes and had good
stability. Comparing to the clinical prediction tools such as 21-
gene score and 70-gene for breast cancer, the Ros-related signature
had better economic viability and may use to improve the treatment
of clinical GC in the future.
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